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Large tridiagonal systems of linear 
equations appear in many numerical 
analysis applications. In our work, 
they arise in line relaxations needed 

by robust multigrid methods, such as the 
parallel BoxMG code [1], for structured grid 
problems. We present a new memory-efficient 
partitioning algorithm for the solution of 
diagonally dominant tridiagonal linear 
systems of equations that scales well  
on distributed-memory parallel computers.  
Its multilevel recursive design makes it  
well suited for distributed-memory parallel 
computers with very large numbers  
of processors.

On a serial computer, Gaussian elimination 
without pivoting can be used to solve a 
diagonally dominant tridiagonal system of 
linear equations in O(N) steps. This serial 
algorithm is commonly referred to as the 
Thomas algorithm [2]. Unfortunately, this 
algorithm is not well suited for parallel 
computers. The first parallel algorithm for 
the solution of tridiagonal systems was 
developed by Hockney and Golub. It is now 
usually referred to as cyclic reduction. Stone 
introduced his recursive doubling algorithm 
in 1973. Both cyclic reduction and recursive 
doubling are designed for fine-grained 
parallelism, where each processor owns 
exactly one row of the tridiagonal matrix. 
In 1981, Wang proposed a partitioning 
algorithm aimed at more coarse-grained 
parallel computation typical for shared 
memory clusters, where NP << N. There has 
also been attention directed toward a parallel 
partitioning of the standard LU algorithm. 
In 1986, Sun et al. introduced the parallel 
partitioning LU algorithm that is very similar 
to Bondeli’s divide and conquer algorithm. 
These algorithms, while well suited for 
problems distributed across a moderately 
large number of processors, do not scale well 
to very large numbers of processors.

Our algorithm can be described as a 
recursion with a partitioning algorithm 
as its basis. We begin by describing this 
partitioning algorithm. The tridiagonal linear 
system is assumed to be distributed across a 
large number of processors, such that each 
processor owns a contiguous number of 
rows. Each processor transforms its piece of 
the tridiagonal matrix into a matrix with a 
sparsity pattern such as
 

 Alocal = .   

Gathering the first and last rows (red) from 
every processor yields an interface system 
that is again tridiagonal and diagonally 
dominant. This interface system can be solved 
by gathering all equations to one processor, 
using the Thomas algorithm there, and 
then scattering the solution back to all NP 
processors. Then the interface unknowns can 
be eliminated from the local systems, yielding 
NP local tridiagonal systems (blue ×’s). These 
local systems can be solved efficiently by the 
Thomas algorithm and do not require any 
further communication. 

Although this nonrecursive single-level 
approach scales reasonably well for moderate 
numbers of processors, it does not scale well 
for very large number of processors: gather 
and scatter operations typically scale linearly 
with the number of processors. Our remedy is 
to gather only pieces of the complete interface 
system to a subset of all processors, such 
that each of these subset-processors owns 
a contiguous piece of the interface system. 
Then we apply the partitioning outlined 
above to each piece of the interface system. 
This yields a lower-level interface system on 
the subset of processors. We proceed with 
further recursion if the subset of processors 
is sufficiently large, or solve the new interface 
system directly on one of the processors in 
the subset.

We describe our algorithm as memory-
efficient because the partitioning step is 
organized such that the interface system is 
generated without overwriting the original 
tridiagonal system.

RESEARCH HIGHLIGHTS 2005                                                                    THEORETICAL DIVISION

T-7 MATHEMATICAL MODELING AND ANALYSIS



For example, the figure shows timings for 20 
V(1,1) cycles with red-black line relaxation 
on a square processor grid with constant 
problem size on each processor. We observe 
very moderate growth in the solution time, 
which indicates good parallel scaling of our 
parallel-line relaxation algorithm. 

The line solves are performed across up 
to 22 processors, without recursion in our 
algorithm. A careful study of the complexity 
of this nonrecursive algorithm indicates 
a linear dependency on the number of 
processors. Our recursive multilevel 
tridiagonal solver, would exhibit only 
logarithmic dependence on the number 
of processors. We will investigate the 
performance of this recursive algorithm in a 
future paper.
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Figure 1— 
Timings for 20 V(1,1) 
BoxMG cycles with red-
black line relaxation on 
square processor grids 
ranging from 2 × 2  
to 22 × 22.
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